Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(10): e1010975, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37819975

RESUMO

WNK (With no Lysine [K]) kinases have critical roles in the maintenance of ion homeostasis and the regulation of cell volume. Their overactivation leads to pseudohypoaldosteronism type II (Gordon syndrome) characterized by hyperkalemia and high blood pressure. More recently, WNK family members have been shown to be required for the development of the nervous system in mice, zebrafish, and flies, and the cardiovascular system of mice and fish. Furthermore, human WNK2 and Drosophila Wnk modulate canonical Wnt signaling. In addition to a well-conserved kinase domain, animal WNKs have a large, poorly conserved C-terminal domain whose function has been largely mysterious. In most but not all cases, WNKs bind and activate downstream kinases OSR1/SPAK, which in turn regulate the activity of various ion transporters and channels. Here, we show that Drosophila Wnk regulates Wnt signaling and cell size during the development of the wing in a manner dependent on Fray, the fly homolog of OSR1/SPAK. We show that the only canonical RF(X)V/I motif of Wnk, thought to be essential for WNK interactions with OSR1/SPAK, is required to interact with Fray in vitro. However, this motif is unexpectedly dispensable for Fray-dependent Wnk functions in vivo during fly development and fluid secretion in the Malpighian (renal) tubules. In contrast, a structure function analysis of Wnk revealed that the less-conserved C-terminus of Wnk, that recently has been shown to promote phase transitions in cell culture, is required for viability in vivo. Our data thus provide novel insights into unexpected in vivo roles of specific WNK domains.


Assuntos
Proteínas de Drosophila , Proteínas Serina-Treonina Quinases , Animais , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Drosophila/metabolismo , Peixe-Zebra/metabolismo , Homeostase , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
2.
Mol Biol Cell ; 34(11): ar109, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37585288

RESUMO

Previous study has demonstrated that the WNK kinases 1 and 3 are direct osmosensors consistent with their established role in cell-volume control. WNK kinases may also be regulated by hydrostatic pressure. Hydrostatic pressure applied to cells in culture with N2 gas or to Drosophila Malpighian tubules by centrifugation induces phosphorylation of downstream effectors of endogenous WNKs. In vitro, the autophosphorylation and activity of the unphosphorylated kinase domain of WNK3 (uWNK3) is enhanced to a lesser extent than in cells by 190 kPa applied with N2 gas. Hydrostatic pressure measurably alters the structure of uWNK3. Data from size exclusion chromatography in line with multi-angle light scattering (SEC-MALS), SEC alone at different back pressures, analytical ultracentrifugation (AUC), NMR, and chemical crosslinking indicate a change in oligomeric structure in the presence of hydrostatic pressure from a WNK3 dimer to a monomer. The effects on the structure are related to those seen with osmolytes. Potential mechanisms of hydrostatic pressure activation of uWNK3 and the relationships of pressure activation to WNK osmosensing are discussed.


Assuntos
Proteínas Serina-Treonina Quinases , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Pressão Hidrostática , Fosforilação
4.
Nat Commun ; 13(1): 2769, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589699

RESUMO

Calcium entering mitochondria potently stimulates ATP synthesis. Increases in calcium preserve energy synthesis in cardiomyopathies caused by mitochondrial dysfunction, and occur due to enhanced activity of the mitochondrial calcium uniporter channel. The signaling mechanism that mediates this compensatory increase remains unknown. Here, we find that increases in the uniporter are due to impairment in Complex I of the electron transport chain. In normal physiology, Complex I promotes uniporter degradation via an interaction with the uniporter pore-forming subunit, a process we term Complex I-induced protein turnover. When Complex I dysfunction ensues, contact with the uniporter is inhibited, preventing degradation, and leading to a build-up in functional channels. Preventing uniporter activity leads to early demise in Complex I-deficient animals. Conversely, enhancing uniporter stability rescues survival and function in Complex I deficiency. Taken together, our data identify a fundamental pathway producing compensatory increases in calcium influx during Complex I impairment.


Assuntos
Canais de Cálcio , Cálcio , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Homeostase , Mitocôndrias/metabolismo
5.
Curr Biol ; 32(6): 1429-1438.e6, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35303418

RESUMO

Central pacemaker neurons regulate circadian rhythms and undergo diurnal variation in electrical activity in mammals and flies.1,2 Circadian variation in the intracellular chloride concentration of mammalian pacemaker neurons has been proposed to influence the response to GABAergic neurotransmission through GABAA receptor chloride channels.3 However, results have been contradictory,4-9 and a recent study demonstrated circadian variation in pacemaker neuron chloride without an effect on GABA response.10 Therefore, whether and how intracellular chloride regulates circadian rhythms remains controversial. Here, we demonstrate a signaling role for intracellular chloride in the Drosophila small ventral lateral (sLNv) pacemaker neurons. In control flies, intracellular chloride increases in sLNvs over the course of the morning. Chloride transport through sodium-potassium-2-chloride (NKCC) and potassium-chloride (KCC) cotransporters is a major determinant of intracellular chloride concentrations.11Drosophila melanogaster with loss-of-function mutations in the NKCC encoded by Ncc69 have abnormally low intracellular chloride 6 h after lights on, loss of morning anticipation, and a prolonged circadian period. Loss of kcc, which is expected to increase intracellular chloride, suppresses the long-period phenotype of Ncc69 mutant flies. Activation of a chloride-inhibited kinase cascade, consisting of WNK (with no lysine [K]) kinase and its downstream substrate, Fray, is necessary and sufficient to prolong period length. Fray activation of an inwardly rectifying potassium channel, Irk1, is also required for the long-period phenotype. These results indicate that the NKCC-dependent rise in intracellular chloride in Drosophila sLNv pacemakers restrains WNK-Fray signaling and overactivation of an inwardly rectifying potassium channel to maintain normal circadian period length.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Cloretos , Ritmo Circadiano , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mamíferos , Neurônios/fisiologia , Proteínas Serina-Treonina Quinases , Transdução de Sinais/fisiologia
6.
Am J Physiol Cell Physiol ; 320(5): C703-C721, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439774

RESUMO

With no lysine (K) (WNK) kinases regulate epithelial ion transport in the kidney to maintain homeostasis of electrolyte concentrations and blood pressure. Chloride ion directly binds WNK kinases to inhibit autophosphorylation and activation. Changes in extracellular potassium are thought to regulate WNKs through changes in intracellular chloride. Prior studies demonstrate that in some distal nephron epithelial cells, intracellular potassium changes with chronic low- or high-potassium diet. We, therefore, investigated whether potassium regulates WNK activity independent of chloride. We found decreased activity of Drosophila WNK and mammalian WNK3 and WNK4 in fly Malpighian (renal) tubules bathed in high extracellular potassium, even when intracellular chloride was kept constant at either ∼13 mM or 26 mM. High extracellular potassium also inhibited chloride-insensitive mutants of WNK3 and WNK4. High extracellular rubidium was also inhibitory and increased tubule rubidium. The Na+/K+-ATPase inhibitor, ouabain, which is expected to lower intracellular potassium, increased tubule Drosophila WNK activity. In vitro, potassium increased the melting temperature of Drosophila WNK, WNK1, and WNK3 kinase domains, indicating ion binding to the kinase. Potassium inhibited in vitro autophosphorylation of Drosophila WNK and WNK3, and also inhibited WNK3 and WNK4 phosphorylation of their substrate, Ste20-related proline/alanine-rich kinase (SPAK). The greatest sensitivity of WNK4 to potassium occurred in the range of 80-180 mM, encompassing physiological intracellular potassium concentrations. Together, these data indicate chloride-independent potassium inhibition of Drosophila and mammalian WNK kinases through direct effects of potassium ion on the kinase.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Túbulos de Malpighi/enzimologia , Potássio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Linhagem Celular , Cloretos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Concentração de Íons de Hidrogênio , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Especificidade por Substrato
7.
Elife ; 92020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33315011

RESUMO

N-Glycanase 1 (NGLY1) is a cytoplasmic deglycosylating enzyme. Loss-of-function mutations in the NGLY1 gene cause NGLY1 deficiency, which is characterized by developmental delay, seizures, and a lack of sweat and tears. To model the phenotypic variability observed among patients, we crossed a Drosophila model of NGLY1 deficiency onto a panel of genetically diverse strains. The resulting progeny showed a phenotypic spectrum from 0 to 100% lethality. Association analysis on the lethality phenotype, as well as an evolutionary rate covariation analysis, generated lists of modifying genes, providing insight into NGLY1 function and disease. The top association hit was Ncc69 (human NKCC1/2), a conserved ion transporter. Analyses in NGLY1-/- mouse cells demonstrated that NKCC1 has an altered average molecular weight and reduced function. The misregulation of this ion transporter may explain the observed defects in secretory epithelium function in NGLY1 deficiency patients.


Assuntos
Defeitos Congênitos da Glicosilação/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Animais , Modelos Animais de Doenças , Drosophila melanogaster , Camundongos , Camundongos Knockout , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Fenótipo
8.
Proc Natl Acad Sci U S A ; 116(3): 810-815, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30591558

RESUMO

Scaffold proteins tether and orient components of a signaling cascade to facilitate signaling. Although much is known about how scaffolds colocalize signaling proteins, it is unclear whether scaffolds promote signal amplification. Here, we used arrestin-3, a scaffold of the ASK1-MKK4/7-JNK3 cascade, as a model to understand signal amplification by a scaffold protein. We found that arrestin-3 exhibited >15-fold higher affinity for inactive JNK3 than for active JNK3, and this change involved a shift in the binding site following JNK3 activation. We used systems biochemistry modeling and Bayesian inference to evaluate how the activation of upstream kinases contributed to JNK3 phosphorylation. Our combined experimental and computational approach suggested that the catalytic phosphorylation rate of JNK3 at Thr-221 by MKK7 is two orders of magnitude faster than the corresponding phosphorylation of Tyr-223 by MKK4 with or without arrestin-3. Finally, we showed that the release of activated JNK3 was critical for signal amplification. Collectively, our data suggest a "conveyor belt" mechanism for signal amplification by scaffold proteins. This mechanism informs on a long-standing mystery for how few upstream kinase molecules activate numerous downstream kinases to amplify signaling.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , beta-Arrestina 2/metabolismo , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase 7/metabolismo , Modelos Biológicos , Fosforilação , Software
9.
J Am Soc Nephrol ; 29(5): 1449-1461, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29602832

RESUMO

Background With No Lysine kinase (WNK) signaling regulates mammalian renal epithelial ion transport to maintain electrolyte and BP homeostasis. Our previous studies showed a conserved role for WNK in the regulation of transepithelial ion transport in the Drosophila Malpighian tubule.Methods Using in vitro assays and transgenic Drosophila lines, we examined two potential WNK regulators, chloride ion and the scaffold protein mouse protein 25 (Mo25), in the stimulation of transepithelial ion flux.ResultsIn vitro, autophosphorylation of purified Drosophila WNK decreased as chloride concentration increased. In conditions in which tubule intracellular chloride concentration decreased from 30 to 15 mM as measured using a transgenic sensor, Drosophila WNK activity acutely increased. Drosophila WNK activity in tubules also increased or decreased when bath potassium concentration decreased or increased, respectively. However, a mutation that reduces chloride sensitivity of Drosophila WNK failed to alter transepithelial ion transport in 30 mM chloride. We, therefore, examined a role for Mo25. In in vitro kinase assays, Drosophila Mo25 enhanced the activity of the Drosophila WNK downstream kinase Fray, the fly homolog of mammalian Ste20-related proline/alanine-rich kinase (SPAK), and oxidative stress-responsive 1 protein (OSR1). Knockdown of Drosophila Mo25 in the Malpighian tubule decreased transepithelial ion flux under stimulated but not basal conditions. Finally, whereas overexpression of wild-type Drosophila WNK, with or without Drosophila Mo25, did not affect transepithelial ion transport, Drosophila Mo25 overexpressed with chloride-insensitive Drosophila WNK increased ion flux.Conclusions Cooperative interactions between chloride and Mo25 regulate WNK signaling in a transporting renal epithelium.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cloretos/metabolismo , Proteínas de Drosophila/metabolismo , Túbulos de Malpighi/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Ligação ao Cálcio/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Epitélio/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Transporte de Íons/genética , Fosforilação , Transdução de Sinais
10.
Protein Expr Purif ; 132: 34-43, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28082061

RESUMO

Apoptosis signal-regulating kinase I (ASK1) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates the downstream MAP kinase kinases (MKKs) from two MAP kinase cascades: c-Jun N-terminal kinase (JNK) and p38. The essential physiological functions of ASK1 have attracted extensive attention. However, our understanding of the molecular mechanisms of ASK1, including the activation mechanism of ASK1 and the catalytic mechanism of ASK1-mediated MKK phosphorylation, remain unclear. The lack of purified ASK1 protein has hindered the elucidation of ASK1-initiated signal transduction mechanisms. Here, we report a one-step chromatography method for the expression and purification of functional full-length ASK1 from Escherichia coli. The purified ASK1 demonstrates auto-phosphorylation activity. The kinase activity of auto-phosphorylated ASK1 (pASK1) was also evaluated on two MKK substrates, MKK4 and 7, from the JNK cascades. Our results show that MKK7 can be phosphorylated by pASK1 more effectively than MKK4. The steady-state kinetic analysis demonstrates that MKK7 is a better ASK1 substrate than MKK4. These observations are further confirmed by direct pull-down assays which shows ASK1 binds MKK7 significantly stronger than MKK4. Furthermore, robust phospho-tyrosine signal is observed in MKK4 phosphorylation by pASK1 in addition to the phospho-serine and phospho-threonine. This study provides novel mechanistic and kinetic insights into the ASK1-initiated MAPK signal transduction via highly controlled reconstructed protein systems.


Assuntos
Expressão Gênica , MAP Quinase Quinase Quinase 5 , Ativação Enzimática , Escherichia coli , Humanos , MAP Quinase Quinase 4/química , MAP Quinase Quinase 7/química , MAP Quinase Quinase Quinase 5/biossíntese , MAP Quinase Quinase Quinase 5/química , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...